
asyncpgsa Documentation
Release 0.1

Rajhans

Feb 26, 2021

Contents

1 sqlalchemy ORM 3

2 sqlalchemy Core 5

3 Install 7

4 Examples 9
4.1 Query Object . 9
4.2 PG Singleton . 10
4.3 Pool . 11

5 Compile 15

6 Testing 17
6.1 Setting up . 17

i

ii

asyncpgsa Documentation, Release 0.1

A python library wrapper around asyncpg for use with sqlalchemy.

Contents 1

asyncpgsa Documentation, Release 0.1

2 Contents

CHAPTER 1

sqlalchemy ORM

Currently this repo does not support SA ORM, only SA Core.

As we at canopy do not use the ORM, if you would like to have ORM support feel free to PR it. You would need to
create an “engine” interface, and that should be it. Then you can bind your sessions to the engine.

3

asyncpgsa Documentation, Release 0.1

4 Chapter 1. sqlalchemy ORM

CHAPTER 2

sqlalchemy Core

This repo supports sqlalchemy core.

install Currently this repo does not support SA ORM, only SA Core.

As we at canopy do not use the ORM, if you would like to have ORM support feel free to PR it. You would need to
create an “engine” interface, and that should be it. Then you can bind your sessions to the engine.

5

asyncpgsa Documentation, Release 0.1

6 Chapter 2. sqlalchemy Core

CHAPTER 3

Install

7

asyncpgsa Documentation, Release 0.1

8 Chapter 3. Install

CHAPTER 4

Examples

There are two ways to use this library, the first is by establishing a pool, and using that. The next is a singleton called
PG. This manages a pool for you and makes it easy to call from module to module without having to pass anything
around.

4.1 Query Object

all there examples use the variable query, this is a query object. It can either be a string or a sqlalchemy core
statement. Here are some examples

string
query = 'select * from sqrt(16)'

#sqlalchemy statement with table object
import sqlalchemy as sa
pg_tables = pg_tables = sa.Table(

'pg_tables', sa.MetaData(),
sa.Column('schemaname'),
sa.Column('tablename'),
sa.Column('tableowner'),
sa.Column('tablespace'),
sa.Column('hasindexes')

)
query = pg_tables.select().where(pg_tables.c.schemaname == 'pg_catalog')

sqlalchemy statement with parameters
query = sa.select('*') \

.select_from(sa.text('sqrt(:num) as a')) \

.select_from(sa.text('sqrt(:a2) as b')) \

.select_from(sa.text('sqrt(:z3) as c')) \

.params(num=16, a2=36, z3=25)

9

asyncpgsa Documentation, Release 0.1

4.2 PG Singleton

If you want the highest level of abstraction, you can can use the singleton object. This will create a pool for you.

4.2.1 Init

Before you can run any queries you first have to initialize the pool

await pg.init(
host=HOST,
port=PORT,
database=DB_NAME,
user=USER,
loop=loop,
password=PASS,
min_size=5,
max_size=10

)

4.2.2 Query

Query is for making read only select statements. This method will create a prepared statement for you and return a
cursor object that will get a couple rows at a time from the database. This is great for select statements with lots of
results. You can also use query without a cursor and transaction by using await

from asyncpgsa import pg

using a cursor and and transaction isolation
async with pg.query(select_statement) as cursor:

async for row in cursor:
a = row['col_name']

no cursor or isolation, all results at once
results = await pg.query(select_statement)
for row in results:

a = row['col_name']

4.2.3 fetch

Want to run a simple statement and get the results as a list? Fetch is for you.

from asyncpgsa import pg

for row in await pg.fetch(query):
a = row['col_name']

4.2.4 fetchrow

This is just like fetch, but only returns a single row. Good for insert/update/delete calls.

10 Chapter 4. Examples

asyncpgsa Documentation, Release 0.1

from asyncpgsa import pg

row = await pg.fetchrow(query)
a = row['col_name']

4.2.5 fetchval

Like fetch row but also only a single column. Dont bother getting the whole row when you only need a single value

Column is a 0 index value.

from asyncpgsa import pg

value = await pg.fetchval(query, column=0)

4.2.6 Transaction

Everything is wrapped in a transaction for you, but if you need to do multiple things in a single transaction, then
establish a transaction using an async with block. Commits and rollbacks will be handled for you.

from asyncpgsa import pg

async with pg.transaction() as conn:
for row in await conn.fetch(query):

a = row['col_name']

await conn.fetchval(update_query)

4.2.7 Begin

Begin is the same as transaction, you just get to choose which word you like best

from asyncpgsa import pg

async with pg.begin() as conn:
for row in await conn.fetch(query):

a = row['col_name']

await conn.fetchval(update_query)

4.3 Pool

If you dont mind passing around the pool object, you can use a pool directly. With the pool object, you currently have
to wrap everything in a transaction.

4.3.1 Creating the pool

4.3. Pool 11

asyncpgsa Documentation, Release 0.1

import asyncpgsa
pool = await asyncpgsa.create_pool(

host=HOST,
port=PORT,
database=DATABASE,
user=USER,
loop=event_loop,
password=PASS,
min_size=5,
max_size=10

)

4.3.2 Transaction

The transaction context manager will establish a connection and start a transaction all at once. It returns the connection
object. Commits and rollbacks will be handled for you.

async with pool.transaction() as conn:
do something with conn
when your code block is done, rollback/commit will happen automatically

4.3.3 fetch

Want to run a simple statement and get the results as a list? Fetch is for you.

#No transaction
async with pool.acquire() as conn:

for row in await conn.fetch(query):
a = row['col_name']

#with transaction
async with pool.transaction() as conn:

result = await conn.fetch(query)

for row in result:
a = row['col_name']

4.3.4 fetchrow

This is just like fetch, but only returns a single row. Good for insert/update/delete calls.

async with pool.transaction() as conn:
row = await conn.fetchrow(query)

a = row['col_name']

4.3.5 fetchval

Like fetch row but also only a single column. Dont bother getting the whole row when you only need a single value

Column is a 0 index value.

12 Chapter 4. Examples

asyncpgsa Documentation, Release 0.1

async with pool.transaction() as conn:
value = await conn.fetchval(query, column=0)

4.3.6 json

import json
import ujson
NOTE: ujson is very fast but ujson.dumps is not safe.

async def main():
async def set_json_charset(connection):

await connection.set_type_codec(
'json',
encoder=json.dumps,
decoder=ujson.loads,
schema='pg_catalog'

)

await pg.init("postgresql://127.0.0.1/template0", init=set_json_charset)

...

As another option you can initialize PostgreSQL dialect with custom JSON serializer and deserializer and pass it into
pg.init

from asyncpgsa.connection import get_dialect

async def main():
dialect = get_dialect(

json_serializer=json.dumps,
json_deserializer=ujson.loads

)

await pg.init("postgresql://127.0.0.1/template0", dialect=dialect)

...

Also you can initialize pool with custom dialect

import asyncpgsa
from asyncpgsa.connection import get_dialect

async def main():
dialect = get_dialect(

json_serializer=json.dumps,
json_deserializer=ujson.loads

)

await asyncpgsa.create_pool(
dialect=dialect,
...

)

...

4.3. Pool 13

asyncpgsa Documentation, Release 0.1

14 Chapter 4. Examples

CHAPTER 5

Compile

If you just want to roll you own everything and use asyncpg raw without all these wrappers, you can probably do it by
just using the compile method in this repo

import asyncpgsa

query = sa.select('*').select_from(sa.text('mt_table'))
query_string, params = asyncpgsa.compile_query(query)
Now you have the raw query string ready for asyncpg, and the ordered parameters.
results = await asyncpg_connection.fetch(query_string, params)

15

asyncpgsa Documentation, Release 0.1

16 Chapter 5. Compile

CHAPTER 6

Testing

The library includes a testing library as well to make testing in your app easier. The testing module mocks out all the
database calls and never actually hits a database.

6.1 Setting up

In order to setup a mock, all you need to do is use the MockPG module in asyncpgsa.testing Then you need to set
the responses that you are expecting. Setting the responses is done by calling mock_pg.set_database_results() where
every argument is a list of dictionaries.

6.1.1 Example test

Here is an example test.

from asyncpgsa.testing import MockPG

async def test_run_query(monkeypatch)
pg = MockPG()
pg.set_database_results([{'id': 1}, {'id': 2}])
monkeypatch.setattr('mypackage.mymodule.pg', pg)
results = await mymodule.run_query()

assert results[0].id == 1
assert results[1].id == 2

And another where there are multiple queries

from asyncpgsa.testing import MockPG

async def test_run_query(monkeypatch)
pg = MockPG()

(continues on next page)

17

asyncpgsa Documentation, Release 0.1

(continued from previous page)

pg.set_database_results([{'id': 1}, {'id': 2}],
[{'id': 28, 'name': 'bob'])

monkeypatch.setattr('mypackage.mymodule.pg', pg)
results = await mymodule.run_multiple_queries()

assert results[0].id == 1
assert results[1].id == 2
assert results[2].name == 'bob'

18 Chapter 6. Testing

	sqlalchemy ORM
	sqlalchemy Core
	Install
	Examples
	Query Object
	PG Singleton
	Pool

	Compile
	Testing
	Setting up

